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› MSD – Maximum SID Depth
– Generic concept defining number of SID’s, HW/SW are capable of imposing on a given node
– Applicable to both, SR-MPLS (labels) and SRv6 (SRH’s) data planes

› Focus of this presentation is SR-MPLS data plane 

› SR-MPLS 
– SID instantiated as an MPLS label, context set by the label value
– Path (LSP) is usually computed by a centralized entity, commonly known as PCE/SDNc
– PCEP with SR extensions is a commonly used protocol to communicate the path to the ingress
– MPLS label stack defines at the ingress the path a packet will take thru the network
– Other actions could be defined and applied as packet traverses the network:

› Apply a service
› Treat a packet in a special way
› Set context
› …

Vocabulary
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› Prefix SID
– Uses SR Global Block (SRGB), must be unique within the routing domain
– SRGB(‘s)  is advertised by an IGP
– Prefix-SID can be configured as an absolute value or an index

› Node SID
– Node SID is a prefix SID with ‘N’ (node) bit set, it is associated with a host prefix (/32 or /128) 

that identifies the node, more than 1 Node SID’s per node can be configured (think router-id)

›

Short SR-MPLS recap – SID types
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› Adjacency SID
– Locally significant in most implementations– can be made globally significant thru ‘L’ flag
– Identifies unidirectional adjacency 
– In most implementations automatically allocated for each adjacency
– Always encoded as an absolute (not indexed) value 

› Binding SID
– Can be originated by any SR capable device in a SR domain
– Can be used to instantiate a new label stack at the SID originating node (anchor), hence 

splitting end2end path into number of sub-paths

Short SR-MPLS recap – SID types
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Controller
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SR in SDN world – topology acquisition 
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Controller

MD-SAL
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RESTCONF
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H-PCE
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SR in SDN world – SID stack provisioning 
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› MSD supported by different HW/SW differs widely :
– Linux (kernel 4.10): 2 SID’s
– Low end merchant silicon: 3-5 SID’s
– High end merchant silicon: 4-7 SID’s
– Proprietary silicon: 4-10+ SID’s 

› If SID stack > MSD at ingress node
– Best case:

› Service can’t be provided
– Worse case:

› Packet will get dropped somewhere in the network

What’s the problem?
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› Source routing along an explicit labeled path

A path with Adjacency SID’s (strict encoding)
MSD =>5
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› Source routing along an explicit labeled path

A path with Adjacency SID’s (strict encoding) 
MSD == 3

B C

N O

Z

D

P

A

9102

9103

9101

9102

9103

9102

9103 9103

9104



Segment Routing part 1 | Jeff Tantsura |  Page 10

› SID stack compression
– Efficient path computation algorithms

› Compressed SID stack that meets MSD limitations 

› SID stack expansion
– Instantiate a new SID stack at the node, within ingress’s MSD limits

› Signaled thru Binding SID 

Possible solutions:
Control plane is the right place to start!
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› SR-LEA
– SR paths Label Encoding Algorithm 

› SR-LEA-A
– SR paths Label Encoding Algorithm with global Adj-SID’s

Possible solutions:
SID stack compression

Label Encoding Algorithm for MPLS Segment
Routing
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Abstract—Segment Routing is a new architecture that leverages
the source routing mechanism to enhance packet forwarding in
networks. It is designed to operate over either an MPLS or
an IPv6 control plane. SR-MPLS, its instantiation over MPLS,
encodes a path as a stack of labels inserted in the packet header
by the ingress node. This overhead may violate the Maximum
SID Depth (MSD), the equipment hardware limitation which
indicates the maximum number of labels an ingress node can
push onto the packet header. Currently, the MSD varies from
3 to 5 depending on the equipment manufacturer. Therefore,
the MSD value considerably limits the number of paths that
can be implemented with SR-MPLS. The consequence may be
an inefficient network resource utilization and may also lead to
congestion. We propose and analyze SR-LEA, an algorithm for an
efficient path label encoding that takes advantage of the existing
IGP shortest paths in the network. The output of SR-LEA is the
minimum label stack to express SR-MPLS paths according to
the MSD constraint. Therefore, SR-LEA substantially slackens
the impact of MSD and restores the path diversity that MSD
forbids in the network.

Index Terms—Segment Routing, MPLS, SR-MPLS, label stack,
traffic engineering.

I. INTRODUCTION

Segment Routing (SR) is a new architecture standardized by
IETF SPRING working group [1]. It can be instantiated over
two existing data plane MPLS (SR-MPLS) [1] [2] and IPv6
(SR-IPv6) [3]. In SR packet are forwarded using the source
routing mechanism: the path the packet has to go through
is encoded in its header. SR-MPLS is the central focus of
the IETF working groups, mainly because of the important
implications of service providers (SPs).

The major advantage of SR is that it eliminates the per-flow
states from the SP’s core routers. In fact, a path is directly
usable by any router; no prior setup/signalization is required,
unlike MPLS-TE where a tunnel has to be signaled and
maintained using protocols such as the Resource Reservation
Protocol Traffic Engineering (RSVP-TE). In SR, only the
ingress node has to maintain per-flow states. Also, SR archi-
tecture adds extensions to already deployed IGP protocols:
Open Shortest Path First (OSPF) [4], Intermediate System to
Intermediate System (IS-IS) [5] and Border Gateway Protocol
Link State [6] to exchange SR information. Therefore, SR-
MPLS revokes the need for a label distribution protocol such
as LDP or RSVP-TE.

A SR Path (SRP) is encoded as list of segments identifiers
(SIDs), each SID associated with a data plane forwarding
instruction e.g., forward the packet down the IGP shortest path
or forward to a specific exit interface.

In the SR instantiation over the MPLS data plane (SR-
MPLS), a SID is represented by a 20-bit label. The SID is
processed using the three standard MPLS operations POP,
PUSH, and SWAP. A SRP is encoded as a stack of labels
that the ingress router pushes onto the packet header. In fact,
pushing more than one was supported since the early version
of MPLS standards [7], the label stack has been used for
multiple use cases: hierarchical tunnels, Layer 2 Virtual Private
Network (L2VPN), and Layer 3 VPN. However, those use
cases require a small number of labels, for example, a scenario
of L2VPN or L3VPN requires only simultaneously two labels:
the tunnel’s label and VPN’s label. To take full advantage
of SR’s potential, a router has to be able to push a larger
number of labels. Unfortunately, current hardware suffers from
physical limitation of the number of labels that can be used
simultaneously [8].

In fact, in order to achieve wire-speed packet processing,
hardware vendors use Application-specific integrated circuit
(ASIC)s. They are designed to perform specific tasks very effi-
ciently compared to general purpose processors. Consequently,
they are limited in the size and the type of the operations they
can perform. For example, the PUSH operation is implemented
using dedicated ASICs that limit the number of labels they can
push onto the packet header, this limitation in SR is known
as the Maximum SID Depth (MSD). Therefore, an efficient
label encoding able to reduce the labels stack size is essential
to alleviate the MSD impact. In addition, reducing the label
stack saves space and enables to carry other types of labels
such as the entropy labels [9].

In this paper, we propose two label encoding algorithms
for SR-MPLS paths. Both algorithms compute the minimum
number of labels to express a SRP. We evaluate their
performances over several real-world network topologies.
The results are presented in term of the average number of
labels to express a set network paths. In addition, we study
their efficiency in alleviating the impact of the MSD limitation.

http://ieeexplore.ieee.org/document/7778603/
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› Analysis based on topologies available from Network Design Library 
– The result is the optimal set of paths to satisfy the demand matrix 

› V: the number of nodes 
› E: the number of links 
› D: number of demands in the demand matrix 

Possible solutions:
SID stack compression

as global segments it is the SR-LEA-A that computes the
minimum label stack.

In SR-LEA-A, we suppose that the Adj-SIDs are advertised
as global segments, the resulting label stack is either smaller
or equal to the SR-LEA’s one. Both algorithms share step 1
detailed in Algorithm 1. In SR-LEA-A, as detailed by the
pseudocode in Algorithm 2: a subpath of size > 3 followed
by one of size = 2 are encoded using one label: the global
Adj-SID between the last node in the first path and the first
node in the second one. Compared to SR-LEA, two labels are
used to encode the two subpaths.

Algorithm 2 Efficient Label Encoding algorithm with global
Adj-SIDs
STEP 1 Same as for SR-LEA
STEP 2

1: for i 1 To Size(A) do
2: if length(A[i]) > 2 then
3: if length(A[i+ 1]) == 2 then
4: push(labelStack, GlobalAdjSID(

A[i][end], A[i+ 1][1]))
5: p+ = 2
6: continue

7: end if
8: push(labelStack,NodeSID(A[i][end]))
9: else

10: push(labelStack,AdjSID(A[i]))
11: end if
12: end for

In the example described in Fig. 4, P3 advertises
its adjacency with P7 as the global SID 1037, the
list A contains the following subpaths: {(PE1, P2, P3),
(P3, P7), (P7, P6, PE5)}. Accordingly, the two subpaths
{(PE1, P2, P3), (P3, P7)} are encoded using the global Adj-
SID P3 � P7 : 1037. Consequently, the label stack for the
path P is [1037, 1004]. At PE1 and P2, based on 1037 the
packet is forwarded down the shortest path to reach P3. At
P3, the top label 1037 is popped and the packet forwarded
through the interface that connects P3 to P7. At P7, based
on the PE5’s Node-SID (i.e., 1005) the packet is forwarded
through the shortest path to reach PE5.

V. SIMULATION RESULTS

In order to better evaluate the performance of the pro-
posed algorithms, we experimented on several SNDlib network
topologies [17] [18]. To get a representative set of paths,
for each topology, we consider a sample bandwidth demand
matrix D. As detailed in Table I, we solve the multicommodity
flow problem [19]. The result is the optimal set of paths to
satisfy the demand matrix. The paths are then encoded using
the strict Adj-SID, SR-LEA and SR-LEA-A.

The two proposed algorithms, compute the minimum label
stack to express a SRP. SR-LEA is used when the Adj-SIDs are
local segments whilst SR-LEA-A is used when they are global.

Topology V E D
Geant 22 36 431
Albilene 12 18 131
Brain 161 166 9045
Germany50 50 80 1270
Nobel-germany 17 26 248

TABLE I: V is the number of nodes. E the number of links.
D: number of demands in the demand matrix.
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Fig. 6: Comparison of the average label stack size generated
using a strict encoding, SR-LEA and SR-LEA-A algorithms.

The comparison is made between the strict encoding, the SR-
LEA and the SR-LEA-A algorithms. For each topology, using
the three encoding algorithms detailed previously, we compute
the average label stack size and the percentage of network
paths encoded with a label stack size MSD.

Fig. 6 illustrates the per-topology average label stack size
variation depending on the topology and the encoding algo-
rithm.

• We observe that the strict encoding always produces a
large label stack. This was expected because no optimiza-
tion on the label stack size is performed, rather a one to
one mapping of the physical links to the label stack. We
note that for some paths the label stack noticeably reaches
up to 14 labels.

• SR-LEA reduces the size of the label stack by 52% to
65% compared to the strict encoding; the observed gain
varies depending on the network design and diameter.

• SR-LEA-A gives the best results. Notably, compared to
the strict encoding, the average label stack size is reduced
by 57% to 67%.

The MSD corresponds to the maximum number of labels a
router can push onto packet header, it is a local characteristic
of a router, it varies from one equipment vendor to another. In
an architecture where the path computation is delegated by the
SR node to a centralized entity such as a SDN controller or
a PCE. The node’s MSD is learned via the Path Computation
Element Protocol (PCEP) extensions for SR [8]. Hence, this
limitation is taken into consideration in the path computation
process. This limitation makes long paths in the network
unusable. Consequently, it forces the network traffic to follow
only short paths which cause inefficient traffic distribution or
worse network congestion. For this study, we fixed the MSD
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› Analysis based on topologies available from Network Design Library

› % of usable paths satisfying service requests with MSD == 5

Possible solutions:
SID stack compression
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› Analysis based on topologies available from Network Design Library

› Average SID stack satisfying service requests 

Possible solutions:
SID stack compression

as global segments it is the SR-LEA-A that computes the
minimum label stack.

In SR-LEA-A, we suppose that the Adj-SIDs are advertised
as global segments, the resulting label stack is either smaller
or equal to the SR-LEA’s one. Both algorithms share step 1
detailed in Algorithm 1. In SR-LEA-A, as detailed by the
pseudocode in Algorithm 2: a subpath of size > 3 followed
by one of size = 2 are encoded using one label: the global
Adj-SID between the last node in the first path and the first
node in the second one. Compared to SR-LEA, two labels are
used to encode the two subpaths.

Algorithm 2 Efficient Label Encoding algorithm with global
Adj-SIDs
STEP 1 Same as for SR-LEA
STEP 2

1: for i 1 To Size(A) do
2: if length(A[i]) > 2 then
3: if length(A[i+ 1]) == 2 then
4: push(labelStack, GlobalAdjSID(

A[i][end], A[i+ 1][1]))
5: p+ = 2
6: continue

7: end if
8: push(labelStack,NodeSID(A[i][end]))
9: else

10: push(labelStack,AdjSID(A[i]))
11: end if
12: end for

In the example described in Fig. 4, P3 advertises
its adjacency with P7 as the global SID 1037, the
list A contains the following subpaths: {(PE1, P2, P3),
(P3, P7), (P7, P6, PE5)}. Accordingly, the two subpaths
{(PE1, P2, P3), (P3, P7)} are encoded using the global Adj-
SID P3 � P7 : 1037. Consequently, the label stack for the
path P is [1037, 1004]. At PE1 and P2, based on 1037 the
packet is forwarded down the shortest path to reach P3. At
P3, the top label 1037 is popped and the packet forwarded
through the interface that connects P3 to P7. At P7, based
on the PE5’s Node-SID (i.e., 1005) the packet is forwarded
through the shortest path to reach PE5.

V. SIMULATION RESULTS

In order to better evaluate the performance of the pro-
posed algorithms, we experimented on several SNDlib network
topologies [17] [18]. To get a representative set of paths,
for each topology, we consider a sample bandwidth demand
matrix D. As detailed in Table I, we solve the multicommodity
flow problem [19]. The result is the optimal set of paths to
satisfy the demand matrix. The paths are then encoded using
the strict Adj-SID, SR-LEA and SR-LEA-A.

The two proposed algorithms, compute the minimum label
stack to express a SRP. SR-LEA is used when the Adj-SIDs are
local segments whilst SR-LEA-A is used when they are global.

Topology V E D
Geant 22 36 431
Albilene 12 18 131
Brain 161 166 9045
Germany50 50 80 1270
Nobel-germany 17 26 248

TABLE I: V is the number of nodes. E the number of links.
D: number of demands in the demand matrix.
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Fig. 6: Comparison of the average label stack size generated
using a strict encoding, SR-LEA and SR-LEA-A algorithms.

The comparison is made between the strict encoding, the SR-
LEA and the SR-LEA-A algorithms. For each topology, using
the three encoding algorithms detailed previously, we compute
the average label stack size and the percentage of network
paths encoded with a label stack size MSD.

Fig. 6 illustrates the per-topology average label stack size
variation depending on the topology and the encoding algo-
rithm.

• We observe that the strict encoding always produces a
large label stack. This was expected because no optimiza-
tion on the label stack size is performed, rather a one to
one mapping of the physical links to the label stack. We
note that for some paths the label stack noticeably reaches
up to 14 labels.

• SR-LEA reduces the size of the label stack by 52% to
65% compared to the strict encoding; the observed gain
varies depending on the network design and diameter.

• SR-LEA-A gives the best results. Notably, compared to
the strict encoding, the average label stack size is reduced
by 57% to 67%.

The MSD corresponds to the maximum number of labels a
router can push onto packet header, it is a local characteristic
of a router, it varies from one equipment vendor to another. In
an architecture where the path computation is delegated by the
SR node to a centralized entity such as a SDN controller or
a PCE. The node’s MSD is learned via the Path Computation
Element Protocol (PCEP) extensions for SR [8]. Hence, this
limitation is taken into consideration in the path computation
process. This limitation makes long paths in the network
unusable. Consequently, it forces the network traffic to follow
only short paths which cause inefficient traffic distribution or
worse network congestion. For this study, we fixed the MSD
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› Analysis based on topologies available from Network Design Library

› % of usable paths satisfying service requests with and without compression

Possible solutions:
SID stack compression
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Fig. 7: Paths expressed with a label stack size  MSD

(MSD = 5).

to 5 labels, which is the value announced currently by the
major equipment vendors.

Fig. 7, illustrates the variation of the percentage of the
useable paths in each topology. With a strict encoding, the
percentage of useable paths can be very low e.g., 37% for
Germany50 topology. Using SR-LEA, increases considerably
the amount of useable paths e.g., from 37% to 97% for
Germany50 topology. However, encoding the label stack
using SR-LEA-A gives the best results, as it increases the
number of usable paths from 37% to 99%, a gain of 2% to
4% more than SR-LEA. We expect the difference to be more
considerable on topologies with bigger diameters.

We conclude that the proposed algorithms are very efficient
in reducing the label stack size, also in minimize considerably
the impact of the MSD limitation. However, both algorithms
do not completely eliminate the MSD problem, as we still have
paths that can not be expressed with a label stack smaller than
the MSD.

VI. CONCLUSION
In this work, we proposed two SR-MPLS paths label

encoding algorithms, namely SR-LEA and SR-LEA-A. Both
algorithms compute the minimum label stack to express a
segment routing path. Their performance has been evaluated
over real topologies. In addition, we prove that they are
efficient in alleviating the impact of the MSD. For future
work, a PCE implementation of the proposed algorithms is
underdevelopment. We are considering the possibility to use
the two algorithms to encode Topology Independent Loop-Free
Alternate (TI-LFA) Fast Reroute post-convergence paths.
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[17] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly,
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› Node O (anchor for Binding SID 25001) expands 25001 into new SID stack 
{9104,9105}

Possible solutions:
SID stack expansion, MSD == 3

B C

N O

Z

D

P

A

9102

9103

9104

9101

9102

9103

25001

9102

9103

25001

9103

25001

9104

9105

9105

Binding 
SID
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› MSD
– OSPF

› draft-ietf-ospf-segment-routing-msd
– ISIS

› draft-ietf-isis-segment-routing-msd
– BGP-LS

› draft-tantsura-idr-bgp-ls-segment-routing-msd

› PCEP
– Binding SID setup

› draft-sivabalan-pce-binding-label-sid

Signaling 
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› HW limitations are impairing service agility
– TTM for a new ASIC is around 2 years

› Innovation in SW provides tangible results
– Work in IETF ensures - the solution is technically sound and can interoperate

› Get your vendors to implement it J

Conclusions 



Questions 
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Thank you!


