
1

Integrating Multiple Radio-to-Router Interfaces to
Open Source Dynamic Routers

Randy Charland, Leonid Veytser, Bow-Nan Cheng

Airborne Networks Group

MIT Lincoln Laboratory, Lexington, MA

{rcharland, veytser, bcheng}@ll.mit.edu

Abstract—Military radio systems are often constrained systems
that require per link information to effectively institute QoS poli-
cies, route packets, manage topology, and tunnel application data.
One of the first attempts at providing standard radio-to-router
information through a common interface was point-to-point over
Ethernet (PPPoE) RFC5578. Although PPPoE RFC5578 works
effectively for directional radios that form point-to-point links,
there are a number of limitations including added overhead,
requirement of Ethernet as the medium between radio and router,
and inefficient medium reuse in broadcast environments. As a
result, many new protocols such as Dynamic Link Exchange
Protocol (DLEP) and Radio-to-Router Control Protocol (R2CP)
have emerged to address the limitations of RFC5578 and provide
a standard method to share per link information with the network
layer. In previous work, an open source routing solution using
a modified Quagga router to support dynamic link metrics were
developed to support an open source implementation of radio-
aware routing with RFC5578. In this paper, we present significant
changes to this system to support both DLEP and R2CP on the
open source router (OSR). These changes facilitate open source
support of all 3 radio-to-router protocols and enable performance
comparisons. 1

I. INTRODUCTION

The current generation of military radio systems are limited-

use systems that work well in a homogeneous radio environ-

ment, but require significant setup and configuration to interop-

erate with other radio systems. Each radio provides a subset of

disparate link information in non-standard interfaces and often

have built-in, home-grown or industry-based routers running

potentially different routing protocols. In a heterogeneous

radio system environment, wireless link characteristics change

rapidly, often requiring direct link feedback from the radio to

make informed routing decisions. In recent years, there has

been a number of works [1], [2], [3], [4] in developing a

common radio-to-router interface that standardizes a subset

of per-link information to pass to the network layer for use

in dynamic MANET routing. While these standards are being

vetted through the Internet Engineering Task Force (IETF),

many have yet to be implemented and tested in real-world

environments.

Generally, radio-to-router interfaces (R2RI) are comprised

of three major components: 1) The link information the radio

can provide, 2) the transport mechanism to get this information

1This work is sponsored by the Department of the Air Force under Air Force
Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations
and conclusions are those of the authors and are not necessarily endorsed
by the United States Government.

Fig. 1. The three major components of any radio-to-router interface

to the router, and 3) a method for the router to make use of

the information to make routing and possibly flow control

decisions. Because many legacy military radio systems do

not support many of the radio-to-router interfaces natively, a

proxy system has been used to emulate the radio-side R2RI

functionality by converting link metrics gleaned from various

radio systems into a common R2RI format. Figure 1 shows

the three radio-to-router interface elements along with a proxy

configuration. As can be seen, R2RI functionality can be

broken into a part that resides on the routing system and one

part that resides on the radio system (or proxy system which

interacts with the radio).

Fig. 2. Neighbor setup with RFC5578 and data packet headers

One of the first R2RI protocols proposed was Point-to-Point

Protocol over Ethernet (PPPoE) with credit based flow control

and link metrics extensions [5] (RFC4938). RFC4938 was

obsoleted by RFC5578 [1] which added support for higher

reported data rates and a few other small changes. For practical

purposes, we utilize RFC4938 and RFC5578 interchangeably

in this paper. Figure 2 illustrates the basic concept behind

RFC5578. When an RF link is established, the radio, running

a point-to-point protocol over ethernet (PPPoE) client initiates

a PPPoE session with the router running a PPPoE server. Then,

the router negotiates an end-to-end PPP connection with the

router on the other side of the link. At periodic intervals, the ra-

dio probes the link and sends PPPoE Active Discovery Quality

978-1-4673-3/12/$31.00 ©2013 IEEE978-1-4673-3/12/$31.00 ©2013 IEEE

2

(PADQ) packets to its local router containing link information

such as per link latency, current and maximum data rate,

relative link quality, resources, and neighbor up/down state.

From this information, the routers dynamically calculate a link

cost based on the quality of the link and the congestion, and

weight the path choices accordingly. The radio periodically

sends credits and credit grants to the server to throttle the

rate of data send, implementing a flow control mechanism. As

credits are used up, the packets are queued per link.

In previous work [6], [7], [8], [9], RFC4938/RFC5578 client

and server/router-side code was developed to allow testing of

the R2RI protocol in emulated and flight test environments. On

the client/radio side, a proxy system was developed to convert

link metrics from seven different legacy military radio systems

into RFC4938-compliant messaging. On the server/router-

side, a common virtual multipoint interface (CVMI) [10] was

developed to aggregate link metrics and expose the informa-

tion to a modified Quagga open source router (OSR). The

open source router [11] received these per link metrics and

dynamically calculated OSPF costs and recomputed shortest

path calculations [12].

While RFC4938/5578 represented a good starting point to

test R2RI applicability in DoD radio systems, its inefficient

medium re-use with broadcast radio systems, and additional

overhead of constructing PPP tunnels over the air, resulted

in the development of two other R2RI technologies: Radio-

Router Control Protocol (R2CP) [2] and Dynamic Link Ex-

change Protocol (DLEP) [3]. Although both protocols show

promise and are currently in draft form in the IETF, evaluating

each technology in emulated and real-world environments is

necessary. Additionally, providing open source implementa-

tions allow for independent testing and increased extensibility.

To evaluate R2CP and DLEP, both client/radio-side code

and server/router-side code must be developed. In this paper,

we detail modifications made to open source implementations

of R2CP and DLEP server/router code to interact with an

open source Quagga router. Per link information is fed to

Quagga and OSPF costs are dynamically calculated based on

link metrics. The reported current data rate (CDR) is used to

provide rate-based flow control on the radio-to-router interface.

We rely on other work to describe implementation details of

the R2RI client-side functionality and integration with existing

network emulators. Key contributions include:

• An open source implementation of fully functional dy-

namic routing based on link metric capability with DLEP

and R2CP support.

• An open source implementation of dynamic rate-based

flow control based on radio link metric feedback.

• Functional evaluation of each of the key components

The rest of the paper is organized as follows: Section II

overviews the key components of the dynamic open source

router with R2RI extensions. Section III delves into each

component, describing design decisions and implementation

details. Section IV gives results from a functional evaluation

of the setup. Finally, Section V concludes the paper with future

work and lessons learned.

II. R2RI SERVER OVERVIEW

To provide R2CP and DLEP functionality on the router,

several components had to be developed or modified. To

understand the design decisions, it is important to first ex-

amine the previous architecture with the RFC4938 server.

Figure 3 illustrates the previous R2RI server-side architecture

and corresponding changes. Under the previous architecture,

three major components functioned together to expose link

metrics to the router and to perform dynamic routing. First, a

PPPoE server was run on the same system to setup and manage

RFC4938 PPPoE connections between the radio and router.

Next, to support multicast and broadcast replication on PPP

tunnels, a common virtual multipoint interface (CVMI) [10]

was developed to inspect PPPoE link packets from the client

and track per link metrics. These link metrics were exposed

to the Linux userspace using Generic Netlink [13] mes-

sages. Lastly, these Generic Netlink messages containing per

neighbor link metrics were received by a modified Quagga

router [11], [14] that utilized metrics to calculate dynamic and

time-varying per link OSPF costs [12].

To reuse as much of the infrastructure as possible, the same

Generic Netlink interface was utilized to expose link metrics

to the modified Quagga router. Instead of a PPPoE-Server and

CVMI, DLEP and R2CP servers were used, which setup and

maintain R2RI connections with the DLEP and R2CP clients.

The DLEP/R2CP server exposed per link metrics using the

Generic Netlink interface which was received by both the

modified open source router and a basic QoS process (qosd),

which utilized ebtables and tc filter commands to limit per

link rate. The data path flowed to the Ethernet interface, via a

common logical Ethernet bridge interface, instead of a CVMI

interface as with RFC4938. In the following section, we detail

each of the three major components of the R2CP/DLEP server-

side setup.

III. IMPLEMENTATION DETAILS

The radio-to-router interface, by its very nature, has compo-

nents on both the radio and router. Previous work [6], [7], [9]

laid the groundwork for supporting link metrics in an open

source Quagga router implementation with RFC4938. Many

of the same interfaces were re-used to feed DLEP and R2CP

link metrics into the open source router.

A. Quagga OSPF Modifications

Quagga [11] is an open-source routing suite that provides

implementations of various routing protocols including OSPF,

RIP, BGP and IS-IS. It has been an important tool in designing

and testing routing protocols as it is possible to change the

source code and add modifications. Recently, the Quagga

routing suite was modified by adding enhancements to support

mobile ad hoc networks (MANETS) to the OSPFv3 routing

protocol called OSPF-MDR [14]. To support R2RI protocols,

link metric extensions were modified on Quagga to receive per

link metrics through a Generic Netlink framework.

The modifications made to the Quagga routing suite to

support R2RI protocols were designed with RFC4938 in mind

but they also work with modified DLEP and R2CP servers.

3

Fig. 3. R2RI Server-side Architecture and Modifications to the RFC4938/5578 architecture to support DLEP and R2CP. The same generic netlink interface
to share link metrics with the modified Quagga router is used.

Quagga was modified to listen for link status and link metrics

updates from the radios and then use this information in the

OSPFv3 routing protocol to make better routing decisions.

Figure 3 shows an example of the modified Quagga router

interfacing with a DLEP [3], [15] session.

The interface between Quagga and router-to-radio protocol

server instances is implemented using Generic Netlink pro-

tocol [16], [13]. The zebra instance of the Quagga routing

suite subscribes to the custom Generic Netlink multicast group

and listens for incoming multicast messages. There are three

different commands that may be contained in those messages:

a STATUS message that contains link status information (link

up or down) of a particular neighbor, a PADQ message that

contains link metrics information of a particular neighbor,

and a PADQ REQUEST message that is a request that the

Quagga router can send to find out link metrics of a specific

neighbor. Each of these individual messages can contain

various attributes, which include link status, neighbor MAC

addresses, neighbor IP addresses, the various link metrics like

CDR, MDR, latency, RLQ, and resources as well as protocol

session and network interface ID’s.

The zebra daemon listens for the Generic Netlink messages

and upon receiving them passes the information along to the

ospf6d daemon. When the ospf6d daemon receives a link

up command for a neighbor that is currently down it imme-

diately sends an expedited hello message to that neighbor

and resets timers. The neighbor will immediately respond

to that hello message and the process of creating an OSPF

adjacency begins. After the adjacency is obtained, the ospf6d
process asks the zebra daemon to send the PADQ REQUEST

message on its behalf. The request message is sent via Generic

Netlink multicast and the process responsible for this neighbor

responds with the required link metrics. After receiving a link

metrics update for a particular neighbor the ospf6 daemon

calculates the OSPF cost based on those metrics. Finally,

when the ospf6d daemon receives a link down command,

the adjacency and the route to that neighbor are immediately

removed and the SPF tree is recalculated.

B. DLEP/R2CP Server

To provide DLEP and R2CP functionality on the server-side,

open source implementations [17], [15] of the protocol were

leveraged. Although development of ground-up DLEP/R2CP

solutions was possible, we chose to leverage the open source

implementation because: 1) the code was fairly stable and

tested, 2) both DLEP and R2CP protocols are still in draft

form in IETF with the potential for changes high (we didn’t

want to re-implement the changes for every draft release),

and 3) the modularized implementation allows flexibility with

other R2RI techniques. In order to integrate DLEP and R2CP

servers with the Quagga router, while maintaining interop-

erability with prior RFC4938/5578 implementations, several

minor modifications were made.

As described in the Quagga modifications section, the OSR

had been previously modified to use dynamic link metrics

reported by the radio. Originally sent from a kernel module

(CVMI) using a Generic Netlink protocol, these link metrics

were exposed by the user space DLEP and R2CP servers

using the same Generic Netlink protocol interface. The event

handlers of both DLEP and R2CP servers were modified

to send out link status change information (link up and

down events) and link metric information whenever the server

received an update from the client. This information was

received by Quagga and used in routing decisions. In addition

to proactively sending updates, the servers were modified

to listen to link metrics request messages and reply with

requested information. These changes can be seen in Figure 3.

The current implementation has a few caveats worth men-

tioning. DLEP and R2CP are Layer 2 protocols and represent

nodes by their MAC addresses (DLEP has an option of

specifying IPv4 and/or IPv6 addresses as well, but it is not

required). However, the Generic Netlink link metrics protocol

4

requires either an IPv4 or IPv6 address to represent a node. To

mitigate this, the implementation assumes that the IPv6 link

local addresses have been generated from the MAC addresses

using the standard EUI-64 method [18] and thus the IPv6

addresses required by the Netlink protocol are assumed using

this method from the MAC addresses specified in DLEP/R2CP

messages if IPv4/IPv6 addresses are not given.

Another caveat in the implementation is the data rate rep-

resentation mismatch between DLEP and RFC4938 protocols

for specifying CDR and MDR. RFC4938 specifies the data rate

in Kbps in the PADQ messages but DLEP specifies the data

rate in bps. Since Quagga router is oblivious to the router-to-

radio protocol used and was originally designed with RFC4938

protocol in mind, it expects CDR and MDR data rates in

Kbps. Therefore, the DLEP server was modified to convert

the data rates it receives from the client from bps to Kbps

before sending them via the Generic Netlink protocol.

Finally, the implementations of DLEP and R2CP server

assume that a custom Generic Netlink group already exists

and therefore requires some other process to create it. As a

result, a small kernel module was developed to register the

Generic Netlink group.

C. QoS Support

QoS support for the DLEP/R2CP protocols was imple-

mented using Linux Traffic Control (tc) functionality along

with Ethernet Bridge Tables (ebtables). QoS was implemented

in an effort to prioritize and shape traffic in accordance to

the bandwidth characteristics of a radio link, as specific by

R2RI link metrics. Without explicit QoS control, Linux would

effectively prioritize and shape traffic based on the underlying

physical interface speed, most often a Fast Ethernet interface,

in a prioritized First-In-First-Out (FIFO) nature. Much of the

desired QoS behavior and scripts used for testing R2CP and

DLEP was a result of previous work [6] with the Air Force

Research Laboratory, when testing RFC5578.

The overall QoS behavior desired was to classify IPv4

traffic based on Differentiated Services Code Point (DSCP),

prioritize the traffic based on the its DSCP, and then shape the

prioritized traffic based on a percentage of the overall available

bandwidth. From a priority perspective, packets marked with

a DSCP of CS7 would have strict priority. Packets marked

with a DSCP of CS6 through CS0 (and DSCP values in

between) were prioritized and queued based on a Class Based

Weighted Fair Queuing (CBWFQ) methodology. Fine-grained

QoS was not implemented for IPv6 traffic as the primary

traffic under test was IPv4-based and the only IPv6 traffic

present during testing was OSPFv3 and ICMPv6. IPv6 link-

local traffic, primarily used by OSPFv3 and ICMPv6, was

manually placed in the same queue as CS7-marked IPv4 traffic

(highest priority).

During normal QoS processing, IPv4 packets are classified

using tc filters. Tc filters are packet-matching filters that

select traffic based on packet characteristics, such as DSCP

or other IPv4 header information, and then place the packet in

a specific queue. However, for DLEP and R2CP scenarios, two

stages of classification were needed due to the fact that each

Fig. 4. Packet marking and QoS in open source router

individual neighbor, located within a single layer-2 broadcast

domain, is differentiated by destination MAC address instead

of physical or logical interface (ppp or eth). This required the

packet be first classified based on Layer 2 and then Layer 3

information. Layer 2 information consisted of the destination

MAC address of the DLEP or R2CP neighbor router. Layer

3 information was based on IPv4 DSCP marking. The initial

destination MAC address classification was implemented using

a logical Ethernet bridge interface in the Quagga router along

with Ethernet Bridge Table (ebtables) rules on that interface.

For the Quagga router, the ebtables POSTROUTING chain

within the Network Address Translation (nat) table was used

to first assign a Firewall Mark (fwmark) to a packet ac-

cording to the destination router MAC address. This fwmark
was used to place the packet into a subset of additional queues

on the outgoing Ethernet interface, which would then look at

IPv4 DSCP markings and queue appropriately based on the

link metrics to that neighbor. Figure 4 illustrates this process.

The queuing disciplines utilized under Linux tc were Hi-

erarchical Token Bucket (HTB) and Stochastic Fair Queuing

(SFQ). HTB queues and classes were structured in a way to

implement the percentage-based, class-based queuing and SFQ

was used to implement FQ within a given class. Differing

priorities assigned to HTB classes were used to set servicing

priority and allocate spare bandwidth to higher priority traffic

classes.

The implementation of QoS was broken into to two parts:

• Shell scripts that would instantiate ebtables rules and

tc queues/classes/filters based on a neighbor ID and the

available Current Data Rate (CDR) to a neighbor

• A process (qosd) that would monitor the status of neigh-

bor links and call the appropriate scripts when neighbors

were created or when link metrics changed.

On the OSR a process called qosd monitored Generic

Netlink messages being sent by the DLEP/R2CP server pro-

cesses to Quagga. For DLEP and R2CP, the qosd daemon

would create ebtable rules and tc queues/classes/filters when

a new neighbor appeared and also change the CDR reported

to the queues, for calculating bandwidth percentages, when

a neighbor’s link bandwidth changed. For multicast traffic a

separate set of queues, of the same structure used for a unicast

neighbor, was constructed to service multicast traffic.

5

IV. FUNCTIONAL EVALUATION

In this section, we provide a functional evaluation of the

system, taking results from a 5-node outdoor field test with

actual 802.11 radios, and a 10-node emulated environment.

The emulated network allow for repeatable tests on the system

while the outdoor field tests help uncover real-world effects.

The goal of this section is to show the system functioning

in various test environments, not to provide a holistic perfor-

mance review. As a result, only a sample of the results are

given. For more test details, see [19]. It is also important to

note that the specifics of the 802.11 implementation for this

test are not detailed as they are not pertinent to the functional

evaluation of the R2RI. The 802.11 radio used in these tests

could be easily replaced by any broadcast, point-to-multipoint,

or point-to-point radio.

A. Link Results

L
a

te
n

c
y

 (
m

s
e

c
)

/
D

a
ta

 R
a

te
 (

k
b

p
s

)
/

O
S

P
F

 C
o

s
t

Time (sec) (Link Uptime: 75.23%, End-to-End Uptime: 70.95%)

80211B Link Metric to OSPF Cost

N1 to N2 (- 15:00 to 15:22 UTC)

Fig. 5. Calculated OSPF cost for R2RI reported CDR, latency, and RLQ

Figure 5 shows 802.11B link data rates, latencies, RLQ,

and OSPF costs seen in the field test, as reported by the

R2RI protocol. In this particular example the reported R2RI

CDR was fixed to 20% of the 802.11 operating data rate

(11Mbps), which was 2.2 Mbps. Calculating an accurate per-

neighbor data rate within an 802.11 ad-hoc network is complex

and not the goal of this work. As such, operating data rates

and scaling values were fixed to simplify CDR reporting,

avoid 802.11 dynamic data rate auto negotiation, and avoid

overrunning the shared medium. The figure shows varying

reported latency, which shows jitter due to increased traffic

load on the network as well as queue backlog when links were

unavailable. The figure also shows an 802.11 RLQ metric,

calculated by querying a customized MadWifi driver, obtaining

a neighbor’s RSSI, and normalizing the value to range of 0-

100. Both latency and RLQ values were averaged and bucketed

to address rapidly changing metrics and prevent link flapping.

Lastly, the figure shows the calculated OSPF cost as a function

of time based on the reported link metrics. Dynamic OSPF

costs indicate successful passing of per link metrics to and

from the DLEP and R2CP servers to the OSR.

While outdoor field tests illustrate how real radios operate,

the results are often not repeatable exactly. For repeatable

results, we turn to our 10-node emulation network. Table I

TABLE I
10-NODE AVG. MEASURED EMULATED LINK METRICS

Emulated Radio Avail MLat RLat CDR RLQ
802.11-1 (24Mbps) 81.9% 22.6ms 44.1ms 4.8Mbps 71.8
802.11-2 (48Mbps) 52.3% 22.5ms 48.2ms 9.6Mbps 68.2

shows the link availability (Avail), measured latency (MLat),

reported smoothed and bucketed latency (RLat), scaled current

data rate (CDR), and relative link quality (RLQ) averaged over

all tests and all runs for both emulated 802.11 radios (802.11-

1 and 802.11-2). As expected, the “802.11-1” radio with a

24 Mbps operating rate achieved higher availability than the

“802.11-2” radio with a 48 Mbps operating rate because lower

data rate leads to ability to decode packets at much higher

distances. The operating rate for both radios were fixed to

remove rate auto negotiation as a variable and for ease of

evaluation. The CDR values were then scaled to 20% of the

operating rate, as with the outdoor field tests. As mentioned

earlier, successful receipt of link metrics indicates a functional

server-side DLEP/R2CP implementation.

B. End-to-End Network Results

One of the basic statistics gathered for any kind of network

system is end-to-end availability. End-to-end availability can

be measured in many ways. In the following subsection, we

present network availability measured through per second all-

to-all link pings (for actual bi-directional data availability) as

well as end-to-end route availability. Route availability, al-

though an important metric, is often times misleading because

even a stale route is seen as an available route. End-to-end link

pings, however, are often affected by traffic load, congestion,

and asymmetric path issues. By presenting both points of

data, one can get a fairly good range of typical application

availability.

Fig. 6. R2RI protocols allow decreasing link polling and overhead while
maintaining high availability

Figure 6 shows the average end-to-end ping availability for

each of the R2RI protocols when utilizing two sets of OSPF

hello/dead intervals. All results are averaged over 10 runs. As

can be seen, when the OSPF hello interval is 1 second and

the OSPF dead interval is 4 seconds (OSPF 1/4) OSPF is able

to quickly discover new neighbors and recover from network

outages fairly quickly, even with no R2RI protocol running,

and there is high end-to-end ping availability. However, when

hello and dead intervals are increased to 10 seconds and

6

40 seconds (OSPF 10/40) OSPF availability is more reliant

on link up/down status messaging from R2RI protocols to

discover neighbor adjacencies. As such, using R2CP and

DLEP can achieve near-optimal availability with little OSPF

polling. RFC5578 achieves the worst end-to-end availability

due to the time needed for end-to-end PPP tunnel negotiation

with new neighbors and/or recovery from lost PPP control

packets during initial negotiation on a lossy network.

Fig. 7. DLEP and R2CP overhead is slightly higher than no R2RI, but
RFC5578 is much higher due to multicast replication

Figure 7 compares the average OSPF overhead per node

under each of the R2RI protocols with differing OSPF hello

and dead intervals. As expected, overhead is much higher

when the hello and dead intervals are set lower (OSPF 1/4)

due to more OSPF hello messages and the increased chance

of a neighbor needing to re-establish an adjacency due to lost

hellos. Also, OSPF costs change over time with dynamic link

metrics, when using R2RI protocols, resulting in more routing

overhead in the form of LSAs. It is important to note that

RFC5578 incurred significantly more overhead than DLEP or

R2CP because of its multicast replication over all PPP tunnels.

The more neighbors a node has, the more overhead is required

for RFC5578. End-to-End network results and ability to pass

data indicate functioning implementations of all R2RI server-

side protocols.

Finally, though DLEP and R2CP are similar and perform

almost equally having the option in DLEP to communicate

IP address information for a neighbor, versus simply a MAC

address, can be beneficial. If requirements dictate the use of

non-EUI-64 IPv6 link-local addressing, and the R2RI protocol

does not provide IP information, then alternative methods need

to be used discover a neighbor’s IP address information prior

to OSPF adjacency formation. Such methods include gratu-

itous ARP or waiting the duration of an OSPF hello interval

for a hello packet to be received. Requirements for additional

end-to-end traffic to obtain IP addressing can result in worse

performance on a lossy network, delaying the formation of

OSPF adjacencies, much like during PPP negotiations for

RFC5578.

V. CONCLUSION

In this paper, we detail modifications made to open source

implementations of R2CP and DLEP server/router code to in-

teract with an open source Quagga router. Per link information

is fed to Quagga and OSPF costs are dynamically calculated

based on link metrics. Reported current data rate (CDR) is

used to provide rate-based flow control on the radio-to-router

interface. Additionally, we provide brief test results from a

5-node field test and a 10-node emulated network to show

functionality of the R2CP/DLEP server/router-side code. The

server-side DLEP and R2CP implementations were leveraged

in several tests involving emulated radios and live 802.11

radios [20], [19]. Future work includes developing a more

robust dynamic QoS solution based on virtual interfaces.

REFERENCES

[1] B. Berry, S. Ratliff, E. Paradise, T. Kaiser, and M. Adams, “PPP Over
Ethernet (PPPoE) Extensions for Credit Flow and Link Metrics,” IETF,
RFC 5578, 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5578.txt

[2] D. Dubois, A. Kovummal, B. Petry, and B. Berry, “Radio-Router
Control Protocol (R2CP),” IETF, Internet Draft (work in process) 00,
2011. [Online]. Available: http://tools.ietf.org/html/draft-dubois-r2cp-00

[3] S. Ratliff, B. Berry, G. Harrison, S. Jury, and D. Satterwhite, “Dynamic
Link Exchange Protocol (DLEP),” IETF, Internet Draft (work in
process) 02, 2012. [Online]. Available: http://tools.ietf.org/html/draft-
ietf-manet-dlep-02

[4] B.-N. Cheng, J. Wheeler, and L. Veytser, “Radio-to-Router Interface
Technology and Its Applicability on the Tactical Edge,” in IEEE Com-
munications Magazine, October 2012.

[5] B. Berry and H. Holgate, “PPP Over Ethernet (PPPoE) Extensions
for Credit Flow and Link Metrics,” IETF, RFC 4938, 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4938.txt

[6] B.-N. Cheng, R. Charland, P. Christensen, A. Coyle, E. Kuczynski,
S. McGarry, I. Pedan, L. Veytser, and J. Wheeler, “Characterizing
Routing with Radio-to-Router Information in an Airborne Network,” in
IEEE Military Communications Conference, MILCOM 2011, November
2011.

[7] R. Charland, P. Christensen, J. Wheeler, and B.-N. Cheng, “A Testbed
to Support Radio-to-Router Interrface Testing and Evaluation,” in IEEE
Military Communications Conference, MILCOM 2011, November 2011.

[8] B.-N. Cheng, R. Charland, P. Christensen, A. Coyle, L. Veytser, and
J. Wheeler, “Characterizing Routing with CoTS Radio-to-Router Infor-
mation in an Airborne Network,” in AIAA Aerodynamic Measurement
Technology, Ground Testing, and Flight Testing Conference 2012, June
2012.

[9] B.-N. Cheng, R. Charland, P. Christensen, L. Veytser, and J. Wheeler,
“Evaluation of a Multi-hop Airborne IP Backbone with Heterogeneous
Radio Technologies,” in ACM Mobihoc Airborne Networks and Com-
munications Workshop 2012, June 2012.

[10] L. Veytser and B.-N. Cheng, “An Implementation of a Common Vir-
tual Multipoint Interface in Linux,” in IEEE Military Communications
Conference, MILCOM 2011, November 2011.

[11] “Quagga open source router source code.” [Online]. Available:
http://www.quagga.net

[12] “Mobile Ad Hoc Networks for Router-to-Radio Communications,”
Cisco Systems, Tech. Rep., 2007. [Online]. Available:
http://www.cisco.com/en/US/docs/ios/12 4t/ip mobility/configuration/
guide/ip manet.html

[13] “Libnl Code.” [Online]. Available: http://www.infradead.org/t̃gr/libnl/
[14] “Boeing OSPF-Manet Quagga.” [Online]. Available:

http://downloads.pf.itd.nrl.navy.mil/ospf-manet/
[15] “DLEP open source code.” [Online]. Available:

http://dlep.sourceforge.net
[16] Linux Generic Netlink Howto. [Online]. Available:

http://www.linuxfoundation.org/en/Net:Generic Netlink HOWTO
[17] “R2CP open source code.” [Online]. Available:

http://r2cp.sourceforge.net
[18] IEEE Standards Association, “Guidelines for 64-bit Global Identifier

(EUI-64)Registration Authority,” IEEE, Tech. Rep. [Online]. Available:
http://standards.ieee.org/develop/regauth/tut/eui64.pdf

[19] B.-N. Cheng, R. Charland, P. Christensen, A. Coyle, I. Pedan, L. Veytser,
and J. Wheeler, “Comparing Radio-to-Router Interface Implementations
on Experimental CoTs and Open Source Routers,” in IEEE Military
Communications Conference, MILCOM 2012, October 2012.

[20] L. Veytser, R. Charland, and B.-N. Cheng, “Integrating Radio-to-Router
Protocols into EMANE,” in IEEE Military Communications Conference,
MILCOM 2012, October 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

