
An Implementation of a Common Virtual
Multipoint Interface in Linux

Leonid Veytser and Bow-Nan Cheng
Airborne Networks Group
MIT Lincoln Laboratory

{veytser, bcheng}@ll.mit.edu

Abstract—In highly dynamic airborne environments, per
link information becomes crucial in effectively routing packets
throughout the network. Point-to-point Protocol over Ethernet
(PPPoE) RFC4938/55781 describes an elegant way to standardize
an interface to transmit per link information to the router to
make educated routing decisions. These dynamically changing
point-to-point links to the router pose an interesting challenge
in defining interfaces in the router configuration and provid-
ing multicast/broadcast emulation. In this paper, we present
an open-source, Linux implementation of a Common Virtual
Multipoint Interface (CVMI). The CVMI aggregates multiple
point-to-point interfaces into a virtual interface and provides
multicast/broadcast emulation on these dynamically changing
interfaces. We describe our implementation in detail and show
how each link can be grouped to perform differently despite
the homogeneous nature of PPP links and provide some basic
performance evaluations to show functionality. 2

I. INTRODUCTION

The current generation of radio systems fielded both in in-
dustry and the DoD community follow a stove-piped, operator
assisted model with each radio designed for a specific task
and interoperable with only a small subset of even similar
systems. While functionality in a homogeneous network of
identical systems works well, platforms often employ a hetero-
geneous range of communication systems, each with its own
proprietary interface to command and control, require manual
setup and configuration, and require significant resources to
route over each system in a dynamic way. Airborne networks
employing high capacity radio technologies are no exception.

HNR

TCDL

Iridium

PPPoE

ATM

RS-232

HNR PPPoE

Router Router

GRE Tunnel

Fig. 1. Current radio technologies are not interoperable, lack a common
software interface, lack standardized link information, lack radio to router
feedback, and require manual configuration in a heterogeneous environment

Figure 1 illustrates the issue: In the presence of hetero-
geneous radio systems that offer varying data rates, latencies,

1RFC5578 supersedes RFC4938 with relatively small changes. For all
practical purposes, we use RFC5578 and RFC4938 inter-changeably

2This work is sponsored by the United States Air Force under Air Force
Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations
and conclusions are those of the authors and are not necessarily endorsed
by the United States Government.

and proprietary built-in routers with varying routing protocols,
operators currently perform routing over heterogeneous links
by manually configuring generic route encapsulation (GRE)
tunnels in full mesh from a central node router on each
platform. These tunnels are then manually assigned a static
cost and run through the routing protocol of choice on the
node router. The problem is further complicated as each
radio system operates at different data rates. To the central
node router, without any direct feedback from the radio, each
interface simply looks like a 10Mbps or 100Mbps link and as
such, no link throttling occurs as radio modulation rates vary
actual achievable throughput.

Radio! Radio!

2. PPPoE! 2. PPPoE!1. RF Link!

3. Point-to-Point Protocol (PPP)!

PPPoE Client!PPPoE Server!

Router! Router!

PPPoE Client! PPPoE Server!

4. PADQ! 4. PADQ!

5. PADC/PADG! 5. PADC/PADG!

Fig. 2. Link setup via PPPoE RFC4938

To mitigate issues with manual static setup and lack of
a common software interface to the radio systems, several
works [1], [2], [3] have proposed a standard radio-to-router
interface - by extracting link information such as data rate,
latency, and relative link quality from each radio and providing
a common interface (with additional link information) to the
router, routing protocols can make more intelligent routing
decisions based on instantaneous layer 2 information. To the
router, all it sees are a set of links with a specific subset
of link information. RFC4938 [1] describes this interface in
detail and Figure 2 illustrates the basic concept. When an RF
link is established, the radio, running a point-to-point protocol
over ethernet (PPPoE) client initiates a PPPoE session with the
router running a PPPoE server. When this is established, the
router negotiates an end-to-end PPP connection with the node
router on the other side of the link. At periodic intervals, the
radio probes the link and sends to its router, PADQ packets
containing link information such as per link latency, current
and maximum data rate, relative link quality, and neighbor
up/down state. From this information, the routers dynamically
calculate a link cost based on the quality of the link and
weight the path choices accordingly. The radio periodically
sends credits and credit grants to the server to throttle the rate
of data sending from the router to the radio. As credits are

The 2011 Military Communications Conference - Track 2 - Network Protocols and Performance

978-1-4673-0081-0/11/$26.00 ©2011 IEEE 710

used up, the packets are queued per link.
Although RFC4938 represents an elegant way of condensing

heterogeneous radios offering disparate information into a
common format, there are a few issues that need to be
addressed. Whereas interfaces such as Ethernet are always
available when connected, PPP interfaces are setup and torn
down as links become available. To complicate matters more,
PPP device numbers can potentially be different every time
a neighbor establishes a new PPP connection. PPP link dy-
namism causes several issues:
• OSPF interface descriptions per PPP are difficult with

dynamically changing PPP device/interface names
• Multicast/broadcast packets have no way to be replicated

over various PPP sessions associated with a specific radio
To mitigate these issues, a Virtual Multipoint Interface

(VMI) was introduced. The VMI is a virtual device that is
always up and tracks and coordinates PPP joins and leaves
while providing for multicast/broadcast emulation through
packet replication. Cisco’s Mobile Ad-Hoc Network for Route-
to-Radio Communications document [1], [3] defines the VMI:

The VMI interface provides services that map outgo-
ing packets to the appropriate PPPoE sessions based
on the next-hop forwarding address for that packet.
The VMI interface also provides a broadcast service
that emulates a set of point-to-point connections as a
point-to-multipoint interface with broadcast ability.
When a packet with a multicast address is forwarded
through the VMI interface, VMI replicates the packet
and unicasts it to each of its neighbors. A version
of the VMI was built to operate on Cisco IOS.

In this paper, we present an open source implementation of
the VMI, the Common Virtual Multipoint Interface (CVMI),
which is a device driver in Linux that aggregates the various
PPP devices associated with a particular type of radio (speci-
fied through RFC4938 service names) and provides multicast
capabilities over PPP links. Additionally, it intercepts PPPoE
RFC4938 PADQ packets and keeps a database of link metrics
for each particular host. This information is sent up to the
userspace (and made available to routing software running
there) via generic netlink messages along with link up/down
information for immediate OSPF feedback to the routing layer.

An open source implementation of the VMI is important
for several reasons. These include:
• Allows independent testing and verification of the

RFC4938 architecture. This is important as RFC4938
is the standard radio-to-router interface used in HNW
systems in the DoD WIN-T program

• Allows ease of testing new routing protocols that use per
link information for multihop routing

• Allows testing of tradeoffs in a RFC4938 architecture
The key contribution of this work is an open source imple-

mentation of a vendor-specific closed-source device. Section II
describe the design and operation of the CVMI while Section
III provides performance evaluation of the CVMI in a dynamic
airborne environment. Finally, Section IV concludes the paper.

II. CVMI OVERVIEW

The CVMI is part of a set of components based on the radio-
aware routing concept whereby radio metrics are leveraged
to provide more efficient routing. As such, it is important to
understand how each component fits into the bigger picture
before getting into the implementation details. Figure 3 illus-
trates a logical diagram of each of the major components.

Open Source Router

Link Info to Router Components

CVMI Device

ppp1 ppp0

IF SesID MDR CDR Lat RLQ

ppp0 125 10M 4M .03 40

ppp1 126 6M 2M .10 60

ppp2 127 3M 1M 1.1 13

ppp2

Exposed to Userspace
via SysFS

ppp3

Kernel Space

User Space

OSPF6d Zebra

Linux
Routing

Table

Modify Linux RT

Quagga Router

Link Metrics + Link
status is multicasted

from kernel via generic
netlink messages

Gen Netlink

zserv zclient
PPPoE-Server

PPPd

PPPd

PPPd

PPPoE

PPPoE

PPPoE

Eth
Device

PPPoE-Server handles
PPPoE session

negotiation and spawns
off a PPPd process for

each connection

Fig. 3. Major components in open source routing

RFC4938 [1] describes a client-server model whereby the
radio systems act as a PPPoE RFC4938 client and the router
acts as a PPPoE RFC4938 server. In our implementation, the
RFC4938 server is a userspace daemon that listens to PPPoE
session initiate requests and handles the setup of PPPoE
sessions from binding the PPPoE session to a specific PPP
device and negotiating exchange of credits and metrics. When
a PPPoE session is created and a PPP device is setup, the
PPP device information, local and remote IPv4 and IPv6 link
local addresses for the PPP tunnel, and PPPoE session ID are
added to a specific CVMI device associated with that particular
PPPoE service name through CVMI commands. In addition to
maintaining a list of PPPoE/PPP sessions, the CVMI sniffs on
incoming PPPoE packets and maps and stores link metrics
(received in the form of PADQ packets) to PPPoE sessions
per link. This information, including link up/down is passed to
userspace via a generic netlink protocol [4]. Any open source
router that has been modified to listen to this generic netlink
packet can utilize the per link information to determine link
cost, modify routing, etc. In our case, a modified version of
the Quagga open source router was used to convert the generic
netlink messages into per neighbor information. Quagga inter-
acts with the link routing table to ensure proper packet delivery
and the details of that implementation are beyond the scope of
this paper [5]. In the following subsections, we will overview
the various components of the CVMI.

711

A. Virtual Interface

A CVMI interface is a virtual Linux network interface.
It is created by loading a cvmi_mod Linux module and
executing using add and remove commands to create and
remove CVMI interfaces. When a new CVMI interface is
created it appears as an Ethernet interface type, with all the
features of a standard Ethernet interface except for the ARP
protocol. The ARP protocol is disabled because the CVMI
interfaces manage several Point-to-Point Protocol (PPP) links,
making ARP unnecessary.

The CVMI interface is also implemented to dynamically
adjust its MTU setting to the lowest MTU size of all the PPP
interfaces that are attached to it.

B. PPPoE Sessions

CVMI Binding of PPP to CVMI

cvmi0

Service Name: manet_radio_tcdl

IPv4 Address: 10.0.0.1

IPv6 Link Local Address: fe80::1

1.  CVMI to Service Name Mapping – Prior to any PPP
links being established, each CVMI is configured to

support a set of PPPoE service names. This is how we
differentiate radios and how they are bound to each

specific CVMI.

2.  IPv4 addresses are also assigned to the CVMI interface

while IPv6 Link Local addresses are automatically
assigned by random

cvmi1
Service Name: manet_radio_hnr

IPv4 Address: 10.0.1.1

IPv6 Link Local Address: fe80::1:1

PPPoE-
Server /

Router

PPPoE-
Server /

Router

Radio Radio

PADI

PADO

PADR PADR

PADO

PADI
3. PPPoE Session Negotiation – PPPoE client (on Radio)

initiates a PPPoE session request with the PPPoE

server / Linux Router via PADI asking for a specific
Service Name. The server goes through standard setup

cvmi0

PPPoE-
Server /

Router

Get IP from SN

Fe80::1

4. Mapping of Requested Service Name to CVMI – Before
the PPPoE-Server sends a PADS packet, it requests the

IP address of the CVMI Device that the Service Name is
bound to. It needs this IP address to pass as an

argument for PPP setup

5. The PPPoE session is now setup and PPPoE-Server forks off a PPPd process to create the ppp device and initiate link
control protocol (LCP) and network control protocol (NCP). As one of the arguments to pppd, the CVMI link local (or IPv4)

address is passed so that the PPP interface now has the same IP address as the CVMI interface it is bound to.

PPPoE-
Server /

Router

PPPoE-
Server /

Router

PPP LCP

PPP NCP (IPv6CP) ! My IP: fe80::1

My IP: fe80::2 " PPP NCP (IPv6CP)

6. PPP performs Link Control Protocol and then Network
Control Protocol. For IP, the local PPP interface IP

addresses are exchanged.

7. Once PPP finishes setup, a script in /etc/ppp/ipv6-up.d is
called to add the created device (say ppp0) and the next

hop neighbor link local address (fe80::2) to the CVMI
neighbor table

cvmi0

PPP NCP
Complete

Script

Add ppp0 to cvmi0

Add next hop fe80::2 to cvmi0 for ppp0

CVMI Neighbor Table

CVMI Dev PPP Dev Next Hop

cvmi0 ppp0 Fe80::2

Fig. 4. PPP device to CVMI device binding process

Each CVMI interface is configured with one or more PPPoE
service names. When a new link is established for a particular
service name, the PPPoE server queries the CVMI module
for the IPv4 and IPv6 link local addresses of the CVMI
interface that is responsible for that service name. When a
new PPP interface comes up, the same IPv4 and IPv6 link
local addresses are assigned to it.

After the PPP session is established, the scripts in
/etc/ppp/ip-up.d and /etc/ppp/ipv6-up.d are
called. These scripts do the following:
• Replace host route to remote PPP connection with the

appropriate CVMI interface instead of PPP interface.
• Add new PPP interface to appropriate CVMI interface.
• Inform the CVMI of remote IPv4 and IPv6 link local

addresses of the PPP session.
After the above steps are complete, the CVMI interface is

ready to send traffic across this newly created PPP interface.
Figure 4 illustrates the process with example IP addresses.

C. Incoming Traffic

The CVMI patch to Linux kernel implements a hook in
dev.c that hands over the incoming packets to the CVMI

module if those packets arrived on any of the attached PPP
interfaces. The CVMI module, in turn, determines which
CVMI interface the attached PPP interface belongs to and
changes the packet’s input device from the PPP interface to
the CVMI interface. After this, the CVMI module passes the
packet up the stack. Now, while the packet traverses up the
stack, it looks like the packet arrived on the CVMI interface
and not on the PPP interface.

D. Outgoing Traffic

Fig. 5. Sending packets via CVMI

The outgoing packets from a CVMI interface are treated
differently depending on whether a packet is unicast or mu-
ticast/broadcast. Figure 5 illustrates the general process for
sending outgoing packets. If a packet is unicast, the CVMI
module needs to determine which attached PPP interface the
packet needs to be sent over. If the packet is broadcast or
multicast, the CVMI interface provides broadcast emulation.

CVMI Sending of Unicast Packets
Suppose an application on Quagga Router 2001::1 wants to send a packet to Router 2002::1

IP Packet ! send

to 2002::1

Query RT for device to send to

Send to cvmi0

Linux Routing Table

Dest Next Hop Dev

2002::1 Fe80::2 cvmi0

1.  Routing Table Query – The router queries the Linux
Routing Table and determines that to send to

destination 2002::1, send the packet to device cvmi0

2. CVMI Next Hop to PPP interface mapping – When the
CVMI device receives the IP packet destined to

2002::1, it queries the Linux Routing table to see
which “Next Hop” link local address it should send to.

CVMI Query for

Next Hop IP

Query RT for NH IP to send to

Send to fe80::2 to CVMI

Linux Routing Table

Dest Next Hop Dev

2002::1 Fe80::2 cvmi0

CVMI Neighbor Table

CVMI Dev PPP Dev Next Hop

cvmi0 ppp0 Fe80::2

CVMI

Map fe80::2 to ppp0

3. CVMI Packet to PPP Device mapping – When CVMI
receives the next-hop link local address from the

Linux Routing Table, it takes this and maps it to a
specific PPP device (ppp0 in example) and send

packet out ppp0 device relying on PPPoE to transport
packet.

Sending of multicast packets involves no lookup of routing table since it merely replicates the
packets and unicasts it to every ppp interface

Fig. 6. Sending unicast data via CVMI

1) Unicast: When a CVMI interface needs to send an
outgoing unicast packet, it has to determine which of its
attached PPP interfaces this packet needs to be sent over. To
do this, the CVMI interface relies on three things:

1) The parent CVMI interface and all of its attached PPP
interfaces share the same IPv4/IPv6 link local address.

2) PPP process notifying the CVMI of the remote IPv4
and/or IPv6 link local address of the PPP connection.

3) A routing protocol, e.g. OSPF, populating the routing
table with routes to remote subnets containing the next
hop (gateway) value.

712

Given the above information, the CVMI interface performs
a routing lookup for the destination IP address of the packet.
It then compares the next hop (gateway) value of the returned
route with its Neighbor Database (NDB4 or NDB6) to de-
termine which PPP interface is associated with this next hop
value. If there is a match, the CVMI interface places the packet
on the matched PPP interface’s output queue. Figure 6 gives
an illustrative example.

2) Multicast/Broadcast: The CVMI interface provides a
broadcast emulation service by combining a set of PPP in-
terfaces into one point-to-multipoint interface with broadcast
capability. If a multicast or a broadcast packet is sent via a
CVMI interface, it will send a copy of the packet via each
PPP interface that is bound to it.

E. Link Metrics

In addition to handling traffic, the CVMI module also has
the ability to process and store all the RFC4938 [1] link
metrics (PADQ) for all attached links. It also sends this and
link status (up/down) information to user space processes
interested in this data via a generic netlink protocol[4].

The open source Quagga router with the link metrics patch
from Boeing[5] allows routing protocols like OSPFv3 to
dynamically change neighbor costs based on the link metrics
information shared in this common generic netlink format. It
also allows the routing to converge faster given an up-to-date
link status information.

F. Kernel Module

A Lesson from Linux Bridge

Bridge

Host 1 Host 2 Host 3 Host 4

eth0 eth1

eth2

Linux Bridge

Host 1 Host 2 Host 3 Host 4

eth0 eth1

br0

/sys/class/net/

br0/ eth0/ eth1/

brport/ brport/

change_ack

config_pending

designated_bridge

etc.

change_ack

config_pending

designated_bridge

etc.

bridge/

ageing_time

bridge_id

forward_delay

gc_timer

hello_time

etc.

brforward
brif/

eth0/

eth1/
bridge/ bridge/

Fig. 7. The basic code of the CVMI was based on the Linux Bridge Module

The CVMI Linux module code is based loosely off the
Linux Bridge [6] module code. Figure 7 illustrates the basic
concept from Linux Bridge. When a bridge device (br0) is
created, entries in sysfs are created that correspond to Kernel
functions. Packets from one Ethernet interface are then bridged
to the corresponding interface on the other end. Like the bridge
module, the CVMI contains three major components: the
Kernel module which handles the device creation and PPPoE
packet interception, the access libraries which provide the
linkage to sysfs, and the userspace utility to directly command
and control the CVMI functions. In this subsections we will
overview the design and implementation of each component.

The CVMI kernel module handles the bulk of the per packet
processing and replication. In its basic form, it comprises of
hooks into the networking stack, a neighbor database that
stores relevant PPP device information and per neighbor link
metrics for each IPv4 and IPv6 neighbor, incoming packet
inspection, outgoing packet inspection and replication, and
generic netlink functions to expose per link information to
userland processes. The hooks into the network stack include:
• Addition of CVMI as an interface in
include/linux/if.h. In our case, IFF_CVMI was
defined as interface number 0x90.

• Creation of an if_cvmi.h file in include/linux
that lists the sysfs attributes for receiving commands
issued to the CVMI as well as returning data such as
PPPoE service names, interfaces, ports, and link info.

• Modification of include/linux/netdevice.h to
declare ports for CVMI and PPPoE discovery packets

• Modification of net/core/dev.c to include a handler
for CVMI packets. The handle_cvmi function inspects
each incoming PPPoE packet and determines whether
it is a PPPoE discovery packet (PADI, PADR, PADQ,
etc.) or not. If it is merely a session packet, the original
socket buffer (sk_buff) is returned to be moved up
the network stack. If it is a PPPoE discovery packet, a
function is called to handle the frame and return back to
be moved up the stack.

• Modifications to kernel configuration file
Direct interaction with the CVMI kernel module uses sysfs

functions. These functions are defined in cvmi_sysfs_*.c
files and allow a userspace utility (cvmictl) to interact
with sysfs for control, configuration, and debug of the cvmi
module. The following are its capabilities:
• CVMI Device Control - Used for adding/deleting CVMI

interfaces as well as getting CVMI IPv4/IPv6 addresses
• CVMI Ports Control - Provides controls for adding and

deleting PPP devices to a specific CVMI device
• Neighbor Database Control - Provides controls for setting

and deleting PPP neighbor IPv4 and IPv6 addresses
• PPPoE Interface Control - Provides capabilities to add

and delete Ethernet interfaces to a specific CVMI device
for listening to PPPoE PADQ information

• PPPoE Session Display - Displays the previously added
PPP interface’s service ID.

• PPPoE Service Name Control - Provides controls for
adding and deleting service names to a CVMI device

• CVMI Local IP/IPv6 Adressing Queries - Controls get-
ting CVMI device IPv4 and IPv6 link local addresses

• CVMI Logging Control - Set and show debug levels

III. FUNCTIONALITY EVALUATION

Because the CVMI device attempts to act as a transparent
interface, direct performance evaluation of the CVMI is diffi-
cult. Functional success can be confirmed through examining
both link layer and network layer characteristics. The primary
functions of the CVMI are the following:

713

1) Adding/deleting/mapping of PPP device to proper CVMI
device based on RFC4938 service name

2) Replication of broadcast/multicast packets across all
PPPs in one CVMI

3) Passing of unicast traffic received at CVMI to correct
PPP devices

4) Informing of router of neighbor up/down based on PPP
device up/down

5) Passing of link metrics to the router
Items 1-3 can easily be verified through cvmictl com-

mands, basic Linux network commands and TCPdumps on
either the CVMI, PPP, or Ethernet interfaces of both the sender
and receiver. Items 4-5 can be demonstrated with measure-
ments taken in both the open source router and the radio link.
In the following sections, we give some representative results
of the CVMI performance, demonstrating basic functionality
and highlighting areas of improvement. Because the work is
focused primarily on the CVMI performance, specific infor-
mation about radio systems and links is unimportant so long as
these link characteristics are accurately conveyed to the router
through CVMI’s generic netlink messages. For the purpose of
demonstration CVMI functionality, emulation and field tests
were conducted using 5 different radio systems, 3 airborne
(ANODE1-3) and 2 ground (GNODE1-2) assets [7], [8].

Each of the radio systems were modified to provide the
PPPoE client functionality either natively in the radio system
or via a proxy. The details of the radio-to-RFC4938 translation
are beyond the scope of the paper and we focus on the
interaction between when a PPP link is established and the
passing of traffic across the link. We evaluate the CVMI
against the metrics of time to transition (from PPP up to
ability to pass data) and dynamic OSPF cost based on CVMI-
provided PADQ link metrics against various flight orbits and
times, and several heterogeneous radio technologies. In the
following subsections, we examine how per link characteristics
are reflected CVMI and the open source router.

A. Link RF to PPP to OSPF Neighbor Transition Analysis

To verify CVMI’s successful informing of the router of a
neighbor up/down based on PPP device up/down, examining
RF to PPP to OSPF neighbor transition timing is important.
When an RF link is established and the RFC4938 client on the
radio or proxy initiates a PPPoE session with the RFC4938
server on the router, a PPP tunnel is formed from one router to
another router and CVMI takes the PPP device up message and
uses generic netlink messages to indicate to the OSPF process
that a link is up. The OSPF process initiates an expedited hello
to establish bi-directional OSPF neighbor relations. In order to
determine if the CVMI was successful in informing the router
when a link is up, we examine transition times between PPP
up and OSPF neighbor relation up. If transition times are large
(4+ secs), then normal OSPF hello processes are involved and
CVMI has not successfully passed link up/down to the router.

Figure 8 give representative descriptions of our observations
with the radio-to-router interface during a 10 minute cross-
section. In short, although there are fluctuations in the actual

RF UP

PPP UP

OSPF UP

ROUTE UP

 6900 7000 7100 7200 7300 7400 7500

Time (sec) from Onstation Time

Electronic Switch Beam Link Status Transition Stages
 Air Node 1 to Air Node 2 (Day 1)

RF Link Up (8.65% Up)
PPP Session Up (9.02% Up)

OSPF Adjacency Up (8.83% Up)
IPv4 Route Up (97.27% Up)

PPP not up long enough to
form OSPF neighbor relations

Fig. 8. RF, PPP, and OSPF link status from one node to another over 10
minute interval. There are times when a PPP is not up long enough for OSPF
neighbor relations to form. Route availability is almost always up because
during this short interval, a secondary radio is on the platform acting as a
fall-over link.

RF uptime, a PPP is maintained to ride out small RF outages.
When an end-to-end PPP is established, OSPF neighbor rela-
tions occur within 2 seconds. The 2 second delay is because
when a PPP link is established, the CVMI sends a “link up”
message to the router which then instructs OSPF to initiate
an immediate “hello” and reset hello timers. Since layer 2
has no information about router-IDs used for layer 3 routing
decisions, this OSPF hello exchange is necessary. As can be
seen in Figure 8, for a short period around 7280 seconds, even
though the RF and PPP link is up, it is terminated too quickly
for OSPF neighbor relations to form.

TABLE I
AVG. RF, PPP, OSPF NEIGHBOR UPTIME - DAY 1 (17:20-18:05 UTC)

Platform (Radio) Avg RF Up Avg PPP Up Avg OSPF Nb
ANode1 - GNode1 (DRS) 94.2% 88.9% 88.9%
ANode1 - GNode2 (DRS) 88.5% 86.3% 85.9%
ANode1 - ANode2 (ESB) 5.0% 5.5% 5.0%
ANode1 - ANode3 (ESB) 20.8% 21.3% 21.3%
ANode2 - GNode2 (ESB) 81.1% 83.9% 83.7%
ANode2 - ANode3 (ESB) 13.1% 13.7% 13.6%
ANode1 - GNode1 (ORS) 99.8% 99.6% 99.6%
ANode1 - GNode2 (ORS) 99.4% 99.3% 98.8%

Table I show the average RF, PPP, and OSPF neighbor
uptime for a 45 minute cross section. As shown, the average
OSPF neighbor uptime tracks the average PPP uptime.

TABLE II
AVERAGE RF TO PPP TO OSPF UP TRANSITION TIME

Radio System Avg RF Up to Avg PPP Up to Avg PPP Up to
(Avg of 2 days) PPP Up OSPF Nb Up Link Ping Up
DRS 0.81 ± 0.299s 0.421 ± 0.263s 0.265 ± 0.127s
ESB 0.54 ± 0.039s 0.319 ± 0.035s 0.349 ± 0.029s
ORS 1.96 ± 0.268s 0.758 ± 0.224s 0.816 ± 0.227s
SATCOM 1 2.50 ± 0.523s 0.689 ± 0.289s 0.806 ± 0.258s
SATCOM 2 2.07 ± 0.368s 0.742 ± 0.227s –

Tables II and III shows the average transition times from
when an RF link is established, when a PPP tunnel is formed,
and when an OSPF neighbor relationship is formed. The
average of the time was taken over all the flight days over all
platforms and the 95% confidence intervals given. As shown
in Tables II and III, average transition times were very short
(less than 1 second) with the exception of the SATCOM links
due to the high latency over the links.

714

TABLE III
AVERAGE RF TO PPP TO OSPF DOWN TRANSITION TIME

Radio System Avg RF Dn to Avg PPP Dn to Avg PPP Dn to
(Avg of 2 days) PPP Dn OSPF Nb Dn Link Ping Dn
DRS 0.058 ± 0.032s 0.108 ± 0.110s 0.000 ± 0.000s
ESB 2.701 ± 0.102s 0.254 ± 0.046s 0.002 ± 0.002s
ORS 0.205 ± 0.098s 0.039 ± 0.017s 0.013 ± 0.009s
SATCOM 1 0.208 ± 0.128s 0.728 ± 0.682s 0.000 ± 0.000s
SATCOM 2 0.228 ± 0.084s 0.189 ± 0.141s –

B. Link Metrics Affect on OSPF Cost Analysis

To examine CVMI successful passing of per link metrics to
the router, an examination of reported PADQ link latency and
current data rate and its effect on dynamic OSPF cost. In the
flight tests, the dynamic OSPF cost generated for each path
is a function of the radio’s reported current data rate (CDR)
and latency. The CVMI takes per link PADQ information and
distributes it to the open source router via generic Netlink
messages. If the latency or CDR fluctuates often, the resulting
OSPF cost assigned to the link will vary as well causing link
flapping. We default on examining link flapping mitigation and
instead present the effect of reported PADQ latency and CDR
on OSPF cost based on a short snapshot of 100 seconds during
one flight day to demonstration successful CVMI functionality.
Figure 9 illustrates this point. The equation used for OSPF to
calculate dynamic costs based on latency and CDR is beyond
the scope of this paper, but includes a weighting factor to allow
network engineers to put tune each metric.

 0

 20

 40

 60

 80

 100

 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060

L
a
te

n
c
y
 (

m
s
e
c
)

Effect of Latency and CDR on OSPF Cost

Link Latency (Lower is better) ESB PADQ Latency
ORS PADQ Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060

C
D

R
 (

k
b

p
s
) Current Data Rate (Higher is better)

ESB PADQ CDR
ORS PADQ CDR

 0

 20

 40

 60

 80

 100

 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060

O
S

P
F

 C
o

s
t

Time(sec) from Onstation Time

OSPF Cost (Lower is better)

ORS preferred over ESB

ESB OSPF Cost (50/50)
ORS OSPF Cost (50/50)
ESB OSPF Cost (75/25)
ORS OSPF Cost (75/25)

Fig. 9. CVMI successfully passes link metrics (latency and CDR) to router
to dynamically calculate OSPF cost

As shown in Figure 9, one radio (Electronic Switch Beam
- ESB) has a much higher data rate than the other (Omnidi-
rectional Radio System - ORS), yet the ORS link has lower
latency than the ESB. With the weights of CDR and latency set
to 50 and 50 respectively, there are times when the ORS link
is preferred over the ESB link. This results in route flapping
on otherwise 2 stable links.

When the CDR is weighted higher than the latency however

(75/25), we notice that the dynamism in the ORS latency does
not affect the OSPF cost enough to flap the links. The routing
algorithm will always choose ESB if it is up because it has
higher bandwidth. This issue was discovered on an earlier
flight day when Air Node 2 (ANode2) and the Ground Node 2
(GNode2) ESB and ORS links were seemingly flopping back
and fourth. The ORS dynamism in the latency seems to be due
to ORS internal layer 2 routing decisions as other non-HCB
ORS assets were in play as well as simply jitter on the latency.
The immediate solution was the weight the CDR and latency
in the OSPF cost formula to favor the higher bandwidth link.
Additionally, we are taking a look at smoothing the proxy’s
reported latency and CDR over time in hopes of reducing the
OSPF cost flapping. The changing of OSPF cost based on
PADQ messages sent from the radio shows CVMI was able
to successful pass per link metrics to the router.

IV. CONCLUSION

In this paper, we present an open source implementation
of a Common Virtual Multipoint Interface (CVMI) which
aggregates RFC4938/5578 PPP links into a point-to-multipoint
interface that provides not only broadcast and multicast sup-
port, but exposes per link metrics such as latency and data
rate to the routing process. Basing some code on the Linux
bridge code, the CVMI is a Linux kernel module comprised of
Kernel hooks to intercept PPPoE packets, tables that maintain
per neighbor information, and access libraries that expose the
information to userland. Because the CVMI is theoretically
transparent to any data transport, we measure success as its
ability to perform multicast and broadcast replication as well
as successful exposure of per link metrics to the OSPF process.
After several local unit and systems tests, the CVMI was used
on several aircraft open source routers and shown to allow for
dynamically adjusting OSPF costs based on information sent
from CVMI to userland. Having an open source CVMI module
allows the testing and rapid prototyping of new MANET
routing protocols on an open platform.

REFERENCES

[1] B. Berry and H. Holgate, “PPP Over Ethernet (PPPoE) Extensions
for Credit Flow and Link Metrics,” IETF, RFC 4938, 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4938.txt

[2] B. Berry, S. Ratliff, E. Paradise, T. Kaiser, and M. Adams, “PPP Over
Ethernet (PPPoE) Extensions for Credit Flow and Link Metrics,” IETF,
RFC 5578, 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5578.txt

[3] “Mobile Ad Hoc Networks for Router-to-Radio Communications,”
Cisco Systems, Tech. Rep., 2007. [Online]. Available:
http://www.cisco.com/en/US/docs/ios/12 4t/ip mobility/configuration/
guide/ip manet.html

[4] “Linux Generic Netlink Howto,” GPLv2, Tech. Rep. [Online]. Available:
http://www.linuxfoundation.org/en/Net:Generic Netlink HOWTO

[5] “Boeing OSPF-Manet Quagga,” GPLv2, Tech. Rep. [Online]. Available:
http://downloads.pf.itd.nrl.navy.mil/ospf-manet/

[6] J. Robinson, “Kernel korner: Linux as an ethernet bridge,” Linux J., vol.
2005, no. 135, p. 11, 2005.

[7] R. Charland, P. Christensen, J. Wheeler, and B.-N. Cheng, “A Testbed
to Support Radio-to-Router Interrface Testing and Evaluation,” in IEEE
Military Communications Conference, MILCOM 2011, November 2011.

[8] B.-N. Cheng, R. Charland, P. Christensen, A. Coyle, E. Kuczynski,
S. McGarry, I. Pedan, L. Veytser, and J. Wheeler, “Characterizing Routing
with Radio-to-Router Information in an Airborne Network,” in IEEE
Military Communications Conference, MILCOM 2011, November 2011.

715

