
Traffic Engineering
Database
in FRR

Design & Architecture

Olivier Dugeon

2

Segment Routing

 To compute Traffic Engineered path (SR-TE)

 To compute next hop for Flexible Algorithm

 Both IS-IS and OSPF are concern

– Could remain internal to each routing daemon, but code could benefit of common code factorization

BGP Link State

 Link State are extracted from Traffic Engineering Link State convey by OSPF and IS-IS

– BGP LS needs to collect information from IS-IS and / or OSPF in a common way

RSVP-TE & PCE

 This is mandatory to setup and compute path

– Both protocols assume the existence of an up to date TED that represent the network topology

Why FRR need TED ?

3

First approach could consist to use directly LSA (OSPF) and LSP (IS-IS)

 TLVs and Sub-TLVs are not the same even if they convey similar values e.g. TE metric

 Impose to have 2 decoders for BGP Link State, RSVP-TE & co

 Impose to have 2 set of messages to convey information between daemons

A common TED approach overcome these limitations

 OSPF, respectively IS-IS are in charge to convert LSA, respectively LSP, to TED structure

 BGP Link State, RSVP-TE & co use the common decoder

 Same set of messages are used to convey TED information

Possibility to model TED structure in yang

 But it is impossible to model a Connected Graph mandatory for path computation (see
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-
model.rst)

A common representation of TED

https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst

4

 module: graph
 +--rw graph-topology
 +--rw graph* [name]
 +--rw name string
 +--rw graph-type? enumeration
 +--rw asn? uint32
 +--rw vertex* [vertex-id]
 | +--rw vertex-id uint64
 | +--rw name? string
 | +--rw router-id? inet:ip-address
 | +--rw vertex-type? enumeration
 | +--rw srgb
 | | +--rw lower-bound? uint32
 | | +--rw range-size? uint32
 | +--rw asn? uint32
 +--rw edge* [edge-id]
 | +--rw edge-id uint64
 | +--rw local-vertex-id? uint64
 | +--rw remote-vertex-id? uint64
 | +--rw name? string
 | +--rw edge-attributes
 | +--rw metric? uint32
 | +--rw te-metric? uint32
 | +--rw color? uint32
 | +--rw local-address? inet:ip-address
 | +--rw remote-address? inet:ip-address
 | +--rw local-identifier? uint32
 | +--rw remote-identifier? uint32
 | +--rw max-link-bandwidth? decimal64
 | +--rw max-resv-link-bandwidth? decimal64
 | +--rw unreserved-bandwidth* decimal64
 | +--rw delay? delay
 | +--rw min-max-delay
 | | +--rw min-delay? delay
 | | +--rw max-delay? delay
 | +--rw jitter? delay
 | +--rw loss? loss
 | +--rw residual-bandwidth? decimal64
 | +--rw available-bandwidth? decimal64
 | +--rw utilized-bandwidth? decimal64
 | +--rw adj-sid? uint32
 | +--rw backup-adj-sid? uint32
 | +--rw srlgs* uint32
 +--rw prefix* [prefix]
 +--rw prefix inet:ip-prefix
 +--rw prefix-sid? uint32
 +--rw vertex-id? uint64

Graph model

5

OSPF API

 Already available, but too OSPF centric (convey LSA only)

 Need to write similar API for IS-IS

 Need to change the API to convey TED structure

Dedicated daemon

 Cons. Setup an extra daemon which need to be monitored to convey some messages

 Pro. Not add more task to ZEBRA layer

Add new ZAPI message

 Pro. Easiest (Base on actual route redistribution) and Fastest solution (no need to code a new bus infrastructure)

 Conf. Add one more message to ZEBRA, but just to pass information between daemon (relay mode)

New paradigm with a dedicated FRR BUS

 Split ZEBRA in 2 parts:
– Kernel interaction (actual ZEBRA)
– Communication between daemons (new FRR BUS)

Exchange TED between daemons

6

First target: BGP Link State

New set of functions inside Library

 TED (Graph) structure

 TED management (CRUD) including Vertex, Edge & Prefix

New ZAPI messages to redistribute TED information

 Send & receive complete TED

 Register daemon to receive TED update

 Send TED update

Path Computation Algorithms inside Library

 In a second step if needed

Proposed code

Thanks

