Traffic Engineering

Database
in FRR

Olivier Dugeon



To compute Traffic Engineered path (SR-TE)
To compute next hop for Flexible Algorithm
Both IS-IS and OSPF are concern

— Could remain internal to each routing daemon, but code could benefit of common code factorization

Link State are extracted from Traffic Engineering Link State convey by OSPF and IS-IS
— BGP LS needs to collect information from IS-IS and / or OSPF in a common way

This is mandatory to setup and compute path
— Both protocols assume the existence of an up to date TED that represent the network topology



A common representation of TED

First approach could consist to use directly LSA (OSPF) and LSP (IS-1S)

= TLVs and Sub-TLVs are not the same even if they convey similar values e.g. TE metric
= Impose to have 2 decoders for BGP Link State, RSVP-TE & co

= Impose to have 2 set of messages to convey information between daemons

A common TED approach overcome these limitations

= OSPF, respectively IS-IS are in charge to convert LSA, respectively LSP, to TED structure
= BGP Link State, RSVP-TE & co use the common decoder

= Same set of messages are used to convey TED information

Possibility to model TED structure in yang

= But it is impossible to model a Connected Graph mandatory for path computation (see
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-quide-graph-
model.rst)



https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst
https://git.opendaylight.org/gerrit/c/bgpcep/+/86954/12/docs/graph/graph-user-guide-graph-model.rst

module: graph

+--rw graph-topology
+--rw graph* [name]

+--rw name string
+--rw graph-type? enumeration
+--rw asn? uint32
+--rw vertex* [vertex-id]
+--rw vertex-id uint64
+--rw name? string

+==rw

+--rw
+--rw
+--rw
+--rw

+--rw router-id?
+--rw vertex-type? enumeration
+-=rw srgb

+--rw lower-bound? uint32
+--rw range-size? uint32

+--rw asn? uint32

edge* [edge-id]

+--rw edge-id uint64
+--rw local-vertex-id? uint64
+--rw remote-vertex-id? uint64
+--rw name? string
+--rw edge-attributes

+--rw metric?

+--rw te-metric?

+--rw color?

+--rw local-address?

+--rw remote-address?
+--rw local-identifier?
+--rw remote-identifier?
+--rw max-Tink-bandwidth?
+--rw max-resv-Tink-bandwidth?
+--rw unreserved-bandwidth*
+--rw delay?

+--rw min-max-delay

| +--rw min-delay? delay
| +--rw max-delay? delay
+--rw jitter?

+--rw loss?

+--rw residual-bandwidth?
+--rw available-bandwidth?
+--rw utilized-bandwidth?
+--rw adj-sid?

+--rw backup-adj-sid?
+--rw srlgs¥*

prefix* [prefix]

prefix inet:ip-prefix
prefix-sid? uint32
vertex-id? uint64

inet:ip-address

uint32

uint32

uint32
inet:ip-address
inet:ip-address
uint32

uint32
decimal64
decimal64
decimal64

delay

delay
loss
decimal64
decimal64
decimal64
uint32
uint32
uint32



Already available, but too OSPF centric (convey LSA only)
Need to write similar API for IS-I1S
Need to change the API to convey TED structure

Cons. Setup an extra daemon which need to be monitored to convey some messages
Pro. Not add more task to ZEBRA layer

Pro. Easiest (Base on actual route redistribution) and Fastest solution (no need to code a new bus infrastructure)
Conf. Add one more message to ZEBRA, but just to pass information between daemon (relay mode)

Split ZEBRA in 2 parts:
— Kernel interaction (actual ZEBRA)
— Communication between daemons (new FRR BUS)



Proposed code

First target: BGP Link State

New set of functions inside Library
= TED (Graph) structure
= TED management (CRUD) including Vertex, Edge & Prefix

New ZAPI messages to redistribute TED information
= Send & receive complete TED

= Register daemon to receive TED update

= Send TED update

Path Computation Algorithms inside Library
= |In a second step if needed



Thanks




